COMPUTER
ENGINEERING
PROGRAM

Middle East Technical
University
Northern Cyprus
Campus

METU
NCC

eMINE Technical Report Deliverable 3 (D3),
September 2013

Automatic Discovery of
Visual Elements of Web Pages

M. Elgin Akpinar
elgin.akpinar@metu.edu.tr
Middle East Technical University,
Ankara, Turkey

Yeliz Yesilada
yyeliz(@metu.edu.tr

Middle East Technical University
Northern Cyprus Campus,
Kalkanlh, Gazelyurt, TRNC,
Mersin 10, Turkey

Web pages are typically designed for visual interaction — they include
many visual elements to guide the reader. However, when they are ac-
cessed in alternative forms such as in audio, these visual elements are
not available and therefore they become inaccessible. To address this
problem, we have proposed an approach to identify visual elements in
a web page and then characterize the semantic role of these elements.
Our system architecture has three major components: 1. automatic iden-
tification of visual elements of web pages, 2. automatic generation of
heuristics as Jess rules from an ontology and 3. application of these
heuristic-based rules to web pages for automatic annotation of visual
elements and their roles. The purpose of this technical report is to in-
troduce our probabilistic approach and describe its technical details.

eMINE

The World Wide Web (web) has moved from the Desktop and now is ubiquitous. It can be
accessed by a small device while the user is mobile or it can be accessed in audio if the user
cannot see the content, for instance visually disabled users who use screen readers. How-
ever, since web pages are mainly designed for visual interaction; it is almost impossible to
access them in alternative forms. Our overarching goal is to improve the user experience in
such constrained environments by using a novel application of eye tracking technology. In
brief, by relating scanpaths to the underlying source code of web pages, we aim to transcode
web pages such that they are easier to access in constrained environments.

Acknowledgements

The project is supported by the Scientific and Technological Research Council of Turkey
(TUBITAK) with the grant number 109E251. As such the authors would like to thank to
(TUBITAK) for their continued support.

Automatic Discovery of
Visual Elements of Web Pages

Contents
1 Introduction 1
2 Automatic Discovery of Visual Elements of Web Pages 2
2.1 Visual Element Identification 3
2.2 Automatic Role Detection 3
2.2.1 A Comparison Between WAfA, ARIAand HTMLS 4
2.2.2 Knowledge Representation and eMine Ontology 5
223 RuleGeneration 8
224 RoleDetection 10
3 Conclusion 13
A Role Definitions in eMine Ontology 14
B Object Properties in eMine Ontology 15
Middle East Technical University, Corresponding author:
Northern Cyprus Campus, M. Elgin Akpinar
Kalkanli, Giizelyurt, TRNC, elgin.akpinar@metu.edu.tr

Mersin 10, TURKEY

Tel: +90 (392) 661 2000
http://www.ncc.metu.edu.tr/

Section 1 Introduction 1

1 Introduction

Web pages consist of many visual elements in order to guide the readers and main purpose
on design process is typically visual interaction. As web technologies evolve, they come up
with more useful and powerful tools and libraries. Using these tools, designers and devel-
opers are able to create more visually interactive web pages. This also results in technically
more sophisticated layouts and web page structures. Unfortunately, far too little attention
has been paid to accessibility issues. Although these technologies improve visual interac-
tion, these visual elements are not available when pages are accessed in alternative forms,
such as in audio with assistive technologies, and as a result, web pages become inaccessible.
The key to solve this problem is to have a deep understanding of the structure of web pages
along with the role of visual elemens, since these identified web elements help to re-process
the web page in transcoding applications, which may both improve accessibility and pro-
vides better presentation in mobile devices [10, 11, 3]. Furthermore, the application area
could be extended to accuracy improvement of information retrieval and data mining [7], or
design of better intelligent user interfaces [8]. In order to sum up, role analysis of the web
elements in the web pages provides very valuable information about the web page structure,
which helps in many web engineering applications.

Visual elements in the web pages have many characteristics, and these characteristics
help us to identify the heuristic role of a visual element. However, these characteristics
are defined with HTML and CSS by the designers and developers, and both HTML and
CSS enable them to create the same visual layout with different coding styles with their
flexible syntaxes. This flexibility and lack of standards (or it is more proper to address
it as avoidance of standards) in web design and development, make automating the role
identification a very challenging task [2]. On the other hand, these characteristics are mainly
based on visual representation of the visual elements and visual representation styles change
in time, based on the current trends. Therefore, these characteristics must be defined in
a dynamic knowledge base, which enables easy modification after some changes in web
trends. In order to address these problems, we proposed an ontology based probabilistic
approach for automatic identification of web elements.

There are many researches conducted in identification of visual elements. [9] describes
these researches in terms of their motivation, purpose, method and evaluation technique in
detail. When we look at the literature, we see that recent studies are either outdates by new
design trends and new web technologies, or have a very simplistic static definition of heuris-
tic rules. Therefore, we need a more up-to-date method with an extended understanding of
visual elements and their roles.

This technical report presents our atomatic discovery method for visual elements in web
pages which operates in following way: first of all, visual elements in the page are iden-
tified. Then, the characteristics of visual elements are converted to rules in an appropriate
syntax for reasoning. Finally, these rules are applied to visual elements and for each visual
elements, a likelihood score for each role is calculated. The role with maximum likelihood
score is assigned to the corresponding visual element. Our approach also proposes an on-
tology which aims to define useful roles for visual elements and describe these role based
on the general characteristics of their visual representation. In this technical report, each
part of our approach and the ontology are explained in detail.

The technical report has been organised in the following way: Section 2.1 gives brief in-

Unpublished and confidential

2 M. Elgin Akpinar, Yeliz Yesilada

1

Documents and Visual Element Unlabeled Visual 3
Associated Files /
n — \dentifier — EIemg:ttTree >
Role Detector Labeled Visual
Element Tree
2 p
Ontology —> Rule Generator —» Jess Rules Out —,_b

Figure 1: System Architecture

formation about visual element identification process. Section 2.2.1 compares and contrasts
existing powerful knowledge bases and explains their weak points. Section 2.2.2 introduces
eMine Ontology and its characteristics. Then, Section 2.2.3 describes our iterative role
detection implementation process. Finally, Section 3 concludes our technical report.

2 Automatic Discovery of Visual Elements of Web Pages

In this section, we introduce our automatic discovery method for visual elements. We can
list our design criteria as follows:

Modifiability: Our method should be modified with respect to different application pur-
poses, since different application areas may focus different characteristics of visual
elements.

Maintainability: Proposed method must be able to be adapted to changing design trends
and also new web technologies.

Coverage: The role characteristics should cover a wide range of visual element attributes
and these characteristics should be properly selected for describing the role.

As was mentioned earlier, web trends and technologies change rapidly. Moreover, ap-
plication area of heuristic role detection of visual elements is so wide that, it includes many
disciplines which may be related, but indeed have some unique requirements. Mobile de-
vice adaptation and information retrieval are two examples of such applications. Therefore,
our main concern in this part is to provide a knowledge base, which is adaptable to chang-
ing trends and technologies as well as modifiable for different application areas. We aim to
achieve this by creating an ontology based knowled base.

The overall architecture of our proposed system has three main components which are
summarised below and illustrated in Figure 3.

Visual element identifier: takes a web page and by using its visual presentation and source
code automatically divides it into visual elements and creates a visual elements tree.

Rule generator: component takes our knowledge base of visual elements implemented in
an OWL ontology and generates heuristic rules for visual elements.

Role detector: component takes rules and visual elements tree generated by our first com-
ponent and returns a labeled visual element tree.

Unpublished and confidential

Section 2 Automatic Discovery of Visual Elements of Web Pages 3

Our system has been implemented on the Accessibility Tools Framework (ACTF) of
Eclipse Foundation!. We also committed our web element identifier implementation to
ACTF and it is available under the terms of the Eclipse Public License v1.0, so that, anyone
can benefit from our contribution.

2.1 Visual Element Identification

In order to detect the roles of visual elements in a web page, we need to first identify
meaningful visual elements in the page by segmenting it in an efficient and convenient way.
In order to identify these visual elements in web pages, we proposed an algorithm, which
is an extended version of VIPS Algorithm [1, 2]. In brief, our algorithm considers both
DOM structure and visual representation of a web to segment it into visual elements. The
algorithm produces a tree of visual blocks in a hierarchical structure. This tree differs than
the DOM structure of the page, since the algorithm eliminates the invalid nodes and group
the adjacent virtual text nodes and inline nodes into one single visual block. Therefore, the
tree of visual blocks is simpler when it is compared to the DOM structure of a web page. In
our ACTF implementation, the visual element identifier generates the tree of visual elements
and creates an XPATH? for each visual block with respect to its corresponding node.

2.2 Automatic Role Detection

After identifying the visual elements in a web page, this section explains automatic role
detection process for visual elements. The main process can be divided into two: rule
generation, in which, a comprehensive knowledge base is constructued and the knowledge
is converted to a suitable rule format; and role detection, in which, these generated rules are
applied on the visual elements that are identified by segmenting the web page. Finally, we
have a tree of visual elements in the web page in an hierarchical structure, and all the visual
elements are labeled with an appropriate role.

Most approaches in the literature propose a single rule based role detection methods.
These single rules are defined with respect to some specific attributes of visual elements.
For example, link count is used to detect the role of the visual element. However, this kind
of methods are based on strict assumptions and flexibility in HTML and CSS makes such
assumptions invalid. A designer also provide the same functionality by using click events
on any other node than link, and do not require to use any link node in the web page. An
assumption on a specific attribute as in this case, is likely to fail in most of the web pages.

However, if we increase these assumptions to cover a wide range of visual element
attributes and common usage styles, then we increase our chance in detecting the role of
a visual element. Therefore, we need to examine distinguishing characteristics of all the
roles and this is also a challenging task, since we must define lots of rules. Even if we crate
a knowledge base which covers characteristics retrieved from millions of pages, there will
still exist many pages which would contain some visual elements which do not satisfy all
the requirements of their corresponding roles. Therefore, it is not possible to apply direct
reasoning to detect the heuristic role of a visual element, instead we can define likelihood

"http://www.eclipse.org/actf/
http://www.eclipse.org/legal/epl-v10.html
*http://www.w3.0rg/TR/xpath/

Unpublished and confidential

4 M. Elgin Akpinar, Yeliz Yesilada

scores for each role and assign values to these scores based on some criteria which visual
element satisfies. At the end the highest likelihood gives us the role of the corresponding
visual element.

2.2.1 A Comparison Between WAfA, ARIA and HTML5

There are some studies and standards which aim to provide a classification of visual ele-
ments. Among these, the most striking ones are WAfA, ARIA and HTMLS. In this section,
we compare and contrast these classifications in brief, and discuss how we benefit these
knowledge bases.

One study conducted on this field proposes WAfA Ontology, which aims to capture
shared understanding of visual elements in web pages [6]. WAfA Ontology provides a clas-
sification for atomic web elements and chunks, as well as nodes, which represent web pages,
and collections, which represents web sites. When we analyse the coverage of WAfA in its
classification, we see that, WAfA provides a very rich knowledge base; however, our initial
experiements showed that it still needs further extensions. These extensions includes both
some reductions on defined roles and some additional roles. First of all, since we are only
interested in identification of visual elements in web pages, node and collection classes
should not be included in our knowledge base. Also, some of the concepts are too spe-
cific that, it is not possible to generate descriptive rules to distinguish such role from their
siblings. For example, Link role is divided into five roles, which are ReferentialLink, Asso-
ciativeLink, StructuralLink, SkipLink and ToTextOnlyPage. These specific role definitions
have a few or no distinguishing characteristics than each other, so that, it is not possible to
define rules to decide on specific role. Consequently, all of these subroles are included as
Link in our ontology. Finally, when we compare it with other knowledge bases, we see that
some further role definitions are required in WAfA Ontology.

Another powerful knowledge base in this field is ARIA Ontology [4]. When we com-
pare the concepts in WAfA to ARIA, we see that, both contain many concepts in common.
However, ARIA includes some noteworthy roles which are not available in WAfA. The
missing concepts in WATfA are textual classifications and interaction items. Textual classes
are important since they describe the main content of the page, which is unique in a web site.
Also, there are many form elements for user interaction, and WAfA only includes a narrow
definition of such items. HTMLS also provides a role set, which enables developers to spec-
ify the role of the visual elements in role attribute. This is also very helpful for our study.
However, when we look at the proposed roles, we see that most of the roles are originated
from ARIA Ontology, and the remaining roles are already defined in WAfA. Therefore,
although HTMLS is also a very powerful resourse, the combination of three ontologies

So far we have analysed existing knowledge resources and their limitations. After
analysis, we see that each knowledge resource includes many important roles; however,
they also have some missing concepts. Therefore, we decided to create a new ontology,
which combines the important concepts of these ontologies. Our new ontology is called
eMine Ontology and available at http://emine.ncc.metu.edu.tr/ontology/
emine.owl. The role set and description of these roles are given in Appendix A.

Unpublished and confidential

Section 2 Automatic Discovery of Visual Elements of Web Pages 5

http://news.yahoo.com/,
http://edition.cnn.com/,
http://huffingtonpost.com,
http://bbc.co.uk/news/,
http://nytimes.com,
http://news.google.com,
http://msnbc.msn.com,
http://weather.com,
http://reddit.com,
http://foxnews.com

News

http://amazon.com,
http://ebay.com,
http://netflix.com,
http://walmart.com
http://imdb.com,

Arts http://deviantart.com,
http://scribd.com
http://www.awwwards.com/,
http://www.cssdesignawards.com/,
http://tympanus.net/codrops/,
http://www.instapaper.com/,
http://www.readability.com/,
http://www.html5rocks.com/en/,
http://www.google.com/insidesearch/underthehood.html,
http://www.aupetitpanisse.fr,
http://www.fubizawards.com/,
http://www.kevorkkiledjian.com,
http://www.colorz.fr/,
http://demo.fluent.io/

Shopping

Design

Table 1: Examined page list

2.2.2 Knowledge Representation and eMine Ontology

In the previous section, we have constructed a set of roles in our ontology. Our main concern
is to detect the role of a visual element among these roles according to some criteria which
based on the attributes of the visual element. Therefore, our aim here is to describe these
roles with their general characteristics and define some properties of them.

In order to find the general characteristics of the roles of visual elements, we have anal-
ysed a set of popular web pages. The web pages we analysed were selected from Alexa®,
which provides analytics for web pages. It also classifies web pages into genres, and in
order to provide a general understanding for common use of web technologies, we have
selected pages from different genres. Also, in order to provide knowledge about current
technologies and web trends, we have included some well designed HTMLS5 web pages.
The pages which we analysed are represented in Table 1.

In this analysis, we examined the identical characteristics of each role and also tried to
find some unique attributes to distinguish these roles from the other roles in the ontology.
As we anticipated, HTML and CSS with their very flexible syntax enables to create the
same visual representation by using different coding styles. Therefore, it is not possible to
fully describe a role with all of its characteristics, rather, we can define a set of them for our

*nttp://www.alexa.com/

Unpublished and confidential

6 M. Elgin Akpinar, Yeliz Yesilada

purpose. After our investigations on web pages, we observed that the following properties
affects how visual elements are used and represented:

e Underlying tag (HTML/HTMLYS);

o Children and parent elements in the underlying DOM tree;

e Size of the element;

e Border and background color of the element;

e Position of the element;

e Some attributes including onclick, for, onmouseover, etc.;

e CSS styles (font-size, color, etc.) of the elements;

e Some specific keywords which appear in the textual content of the element;

e Some specific keywords which appear in the id, class, role, src, background-image
attributes of the element.

In our web page analysis, we not only defined the attributes which describe a role, but
also investigated the values of each attribute for each role. In other words, we described each
role with their characteristics in general use. Some of these values were categorised under
some classes, such as HTML tags, and some of them included in the ontology as string
entities, such as textual keywords. These values were assigned to roles by using object
porperties in the ontology. An object property can be thought as a function definition which
as both range and domain definitions. The domain specifies the classes which an object
property can be applied on, while the range specifies the type of its value. Complete list
of object properties in our ontology is given in Appendix B. Based on the ranges of object
properties, we classified them under two groups. The first group of object properties takes
exactly one value which is either a role, string, tag, attribute or any other class defined in
the ontology. These object properties were used to define relations which takes a predefined
class or a string literal in its range. The second group of properties, on the other hand, takes
an undefined complex description of role as its value, such as, for an object property which
defines having a child with DIV tag. In this example, we refer to a class definition, which
is not already defined in the ontology, but it needs to be used in a definition. We can refer
second group as nested definition of object properties, since in fact it contains two nested
object properties.

After these definitions, we have conducted a set of manual experiments with our ontol-
ogy. After these experiments, we have found that, the accuracy can be further improvement
with a couple of additions in the ontology. Therefore, we have followed an iterative ap-
proach in development process. First of all, we observed that, some object properties are
more important than others in describing a role, since they affect the decision on role de-
tection more than others. For example, id attribute of a visual element gives more accurate
information about its role than its size. Therefore, the object property which corresponds
to id of the visual elements should have higher weight than the object property which de-
scribes the size. In order to achieve this, we defined a factor attribute for object properties,
and with manual experiments we assign a factor for each role. By doing so, we defined an

Unpublished and confidential

Section 2 Automatic Discovery of Visual Elements of Web Pages 7

importance value for each object property. Morever, we observed that, some values also
affect the accuracy than other values for the same role and the same object property. Title
role is a good example for such cases. It is possible to create a 7itle visual element by using
either a H1, H2 or H3 tag or a P tag with the font weight of the visual element set bolder
than the remaining of the page. In both cases, a designer produces the same visual repre-
sentation and can create a Title visual element. Although this is the case, only using a P tag
does not produce a Title element on its own. In order to specify it in object properties, we
defined a multiple level of object properties, in which an object property like must_have_tag
has higher factor than an object property, such as may_have_tag. In our manual evaluation,
we observed that these enhancements improved the accuracy of role descriptions.
At the end of our development process, an object property has the following structure:

<owl:0ObjectProperty rdf:about="emine#has_id">
<rdfs:comment><! [CDATA[Specifies the id or class name which an
atom or a chunk may have.]]></rdfs:comment>
<rdfs:label>has_id</rdfs:label>
<rdfs:factor>5</rdfs:factor>
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="eminefatom" />
<owl:Class rdf:about="emine#chunk"/>
</owl:unionOf>
</owl:Class>
</rdfs:domain>
<rdfs:range>
<owl:Class rdf:about="http://www.w3.0rg/2001/XMLSchema#string"/>
</rdfs:range>
</owl:0bjectProperty>

In this example, factor, domain and range definitions are represented. Using the object
properties, then we draw relationships between the role definitions and their characteristics.
A brief example of a role definition in our ontology can be represented as following:

<owl:Class rdf:about="emine#Header">
<rdfs:comment><! [CDATA[Is typically printed at the top of a page
and includes, for example, a company logo, the title of
the page, list of links and sometimes a search engine.]]>
</rdfs:comment>
<rdfs:label>Header</rdfs:label>
<rdfs:subClassOf rdf:resource="eminef#chunk" />
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="emine#chunk" />
<owl:Restriction>
<owl:onProperty rdf:resource="emine#must_have_tag" />
<owl:hasValue rdf:resource="eminef#Header" />
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="emine#has_tag" />
<owl:hasValue rdf:resource="emine#Div" />
</owl:Restriction>
<owl:Restriction>
<owl:onProperty rdf:resource="emine#in_position" />
<owl:allValuesFrom>

Unpublished and confidential

8 M. Elgin Akpinar, Yeliz Yesilada

<owl:Class>
<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:about="emine#Top" />
<owl:Thing rdf:about="emine#Left" />
<owl:Thing rdf:about="emine#Right" />
</owl:oneOf>
</owl:Class>
</owl:allValuesFrom>
</owl:Restriction>

</owl:intersectionOf>
</owl:Class>

In common use of the ontologies, the object properties fully describe an object. A
sample transition of an object and its properties to first order logic is as follows [5]:

IxIy.triple(block, emine : has_tag, x)
A.triple(block, emine : has_style, y)

(
(
(
(

A.triple(y, emine : name, "border”)

A.triple(block, emine : has_id, "header”)

A.triple(x, emine : name, "Header”)

According to this representation, we need to fully describe a visual element role with
all of its characteristics. In order to achieve this, we need to be able to determine all of
its attributes in the domain of the problem. However, our problem arises from the fact that
we cannot define all the attributes of a heuristic role and a visual element does not have to
satisfy all the attributes of its role due to the flexible syntax of HTML and CSS. Therefore,
we construct a probabilistic approach to the problem. We define a set of attributes which a
visual element might satisfy all of the attributes or some of them. The more attribute of a
rule a visual element satisfies, the more likely that the visual element has the corresponding
rule. Our approach to the ontology and object properties can be represented as follows:

IxTy.triple(block, emine : has_tag, x)
V.triple(block, emine : has_style, y)

(
(
(
(

A.triple(y, emine : name, “border™)

V.triple(block, emine : has_id, "header”)

A.triple(x, emine : name, "Header”)

2.2.3 Rule Generation

After we created the ontology, we integrated it with our implementation. The first step
of integration was ontology parsing with OWL API, which is a Java API and reference
implementation for creating, manipulating and serializing ontologies. It is also open source
and available under either the LGPL or Apache Licenses. Finally, it includes RDF/XML,
OWL/XML parsers which fits with the structure of our ontology.

In order to parse our ontology, we also required a reasoner. A reasoner is used to query
basic information from the ontology, such as the subclasses of a given class, or defined
object properties and their values for each class. Since our knowledge base is dynamic and
open to any modification in both role definitions and object properties, a reasoner is the
key component in ontology parsing. By querying the subclasses of two main classes in our

Unpublished and confidential

Section 2 Automatic Discovery of Visual Elements of Web Pages 9

ontology, which are atom and chunk, we can retrieve all roles from the ontology, as well
as their object properties. The OWL API includes various interfaces for accessing OWL
reasoners. In this study, we have used a reasoner, called HermiT.

HermiT is a reasoner for ontologies written using the OWL and capable of determining
whether or not the ontology is consistent and identify subsumption relationships between
classes. Using Hermit, we can obtain all subclasses of atom and chunk concepts, and their
characteristics defined by object properties. Also, it helps us to check whether the ontology
is well formed or contains syntax errors. one reason for using HermiT in our implementation
is that it has the required interfaces with OWL API and it is easy to integrate in our system.
Another reason is that, HermiT is a buffering kind of reasoner, which is the default kind. In
nonbuffering reasoners, the ontology changes are processed by the reasoner immediately so
that any queries asked after the changes are answered with respect to the changed ontologies.
On the other hand, in buffering reasoners, ontology changes are stored in a buffer and are
only taken into consideration when the buffer is flushed with the flush() method. Since
ontology changes are not applied in execution life cycle, we used a buffering reasoner.

Using the reasoner, we could retrieve all subclasses of atom and chunk concepts in
OWLClass type. Moreover, we can query the properties in OWLObjectProperty type. How-
ever, we observed that, ontology parsing is a costful process and increases the response time
of the system when it is called in each run. Moreover, although the knowledge base could
be modified for some reasons, it is not as frequently that we need to parse the ontology in
each time we run our program. Therefore, in order to solve this problem, we came up with
a solution, in which ontology is converted into an appropriate format for later role detection
process, and parsed again only if it is externally modified. To achieve this, we calculated
the MD5 checksum of the ontology file and kept it in a local file. When the program is run
and there is an established internet connection, the program calculates the MD5 checksum
of the ontology in the server and compares it to the value in the local file. In there is a
difference between two values, then it means that ontology was changed and it needs to
be parsed again. Parsed information is kept in a local CLP file, which will be explained
in detail. With this enhancement, we reduced the time required to download and parse the
ontology and convert to the Jess rules. We gained 3-5 seconds in each run.

Unpublished and confidential

10 M. Elgin Akpinar, Yeliz Yesilada

Unlabeled /
HTML Doc Block
— Sy A ’ ’
— Out (RITIEE | »{ Labeled Block Structure)
Comparator N,)
YT
Ontology Reasoner ——/ Blocks

Qut

Figure 2: Architecture of the First Approach

2.2.4 Role Detection

In order to detect the roles of visual elements in web pages, we started with a simple ap-
proach but faced with some performance issues. In order to solve these issues, we followed
an iterative approach in development. In this section, we describe each approach and some
general technical terms related with them.

The first approach in heuristic role detection was based on direct string comparison
between role characteristics and visual element attributes. The system architecture is rep-
resented in Figure 2 and its algorithm is given in Algorithm 1. Although this approach is
very simplistic and easy to implement, it has caused some performance issues. Especially
for large pages, string comparison is very inefficient and causes long response times.

In order to solve efficiency problem with direct string comparison, we proposed a sec-
ond approach, in which we use a rule engine to detect roles of visual elements. We used Jess
rule engine for this purpose, which is a Java based rule engine and scripting environment
and can be integrated with our Java based implementation to “reason’ using role definitions
and object properties in the form of declarative rules. One of its advantages is also its short
response time. Jess uses an enhanced version of the Rete algorithm to process rules, which
is a very efficient mechanism for solving the difficult many-to-many matching problem.
This approach is represented in Figure 3 and can be summarised as in Algorithm 2. Jess has
a LISP like syntax and each visual element and role definition with its characteristics must
be interpreted in this syntax. The syntax of Jess is explained with examples.

In this approach, first we defined a template to describe the visual elements as facts in
the working memory. A fact is the representation of a visual element in a web page. The
collection these facts is called working memory. Every fact has a template, which defines
its structure including its name and the set of its attributes. These attributes are represented

Algorithm 1: String Comparison Based Approach for Role Detection

input : Unlabeled tree of visual elements and ontology

output: Labeled tree of visual elements

foreach visual element e in visual element tree do
foreach role r in ontology do

if attributesEqual (e, r) then
| increaselLikelihood (e, r)

end
end
end

Unpublished and confidential

Section 2 Automatic Discovery of Visual Elements of Web Pages 11

ST Doc / Lnlabeled

Block

m___ _ ulPE ¥ Stucture

— Out

Ontology Reasoner m’

/ RulesOQut /

4

Jess Rule

g)
Shgine —;‘\\Labe\ed Block Structure)

Figure 3: Architecture of Second Approach

as slots. Since each attribute (such as has_tag, has_child, etc.) may have more than one
value, we used multislot instead of slot. A sample template definition for visual elements is
as follows:

(deftemplate block
(multislot has_id)
(multislot has_keyword)
(multislot has_tag)
(multislot has_attribute)
(multislot is_style_set)

)

In working memory, the likelihood scores are stored in a variable. Therefore, we need
to define a variable for each role to indicate its likelihood score. In order to manipulate a
defined variable in heuristic rule functions, its must be defined as global variable. The initial
values of these global values were set to 0. Following code snippet illustrates an example
global variable definition for Header role likelihood score:

(defglobal ?xHeaderx = 0)

After global variable creation, then we defined heuristic rules, which were previously
defined in the ontology as restrictions describing the characteristics of a specific role. In
Jess, rule definitions are very simple and typically in if...then...format. If an attribute of
a visual element which is related with the corresponding rule satisfies the requirement in if
part, the statement in then part is executed.

Algorithm 2: Rule Engine Based Approach for Role Detection
input : Unlabeled tree of visual elements and ontology
output: Labeled tree of visual elements
Create a working memory using ontology
foreach visual element e in visual element tree do

assert (e)
getRoleWithMaxLikelihood ()
end

Unpublished and confidential

12 M. Elgin Akpinar, Yeliz Yesilada

For example, following restriction on Header role indicates that, the tag of a Header
element is more likely to be HEADER:

<owl:Restriction>
<owl:onProperty rdf:resource="emine#must_have_tag" />
<owl:hasValue rdf:resource="emine#Header" />
</owl:Restriction>

The rule corresponding above restriction is defined in Jess syntax as follows:

(defrule Header02
(block (must_have_tag \$? /.xHeader.x/ \$?))
=> (bind ?+Header* (+ "8" ?xHeaderx))

)

In this example, Header02 keyword denotes the unique name of the rule. The remaining
consists of two parts. The first part, (block (must_have_tag $7 /. * Header. x | $7)),
specifies which types of object this rule is applied on and in which conditions the rule is
fired. In this example, the rule is applied on block objects when must_have_tag attribute
of the visual element contains HEADER tag. The second part, (bind 7+ Headerx (+ 78" 7x
Headerx)), is the then part, and defines what happens when the condition in the first part
is satisfied. In our example, the global variable which corresponds to the likelihood score
of Header role is incremented by 8, which is the factor of must_have_tag object property.

After defining the template for visual elements, the global variables for likelihood scores
and heuristic rules for role characteristics, the next step is to apply these rules on visual
elements in the working memory of the Jess. A working memory is the set of facts and a
fact is the representation of a visual element in predefined template. In our case, the facts are
based on a template, consequently, they are well structured. This type of facts are referred
as unordered facts.

Finally, we need to reason on visual elements based on the rules we defined. In order to
do so, following script is run in the working memory:

(assert
(block
(has_1d header)
(has_tag div)
(is_composite 0)

)

In this example, a simple atomic visual element, which has “header” id attribute and
DIV tag, is inserted into the working memory. When we run the working memory, all of the
rules, which visual element satisfies their first part, fire and their second part is executed. At
the end of this set of executions, a set of global variables, each corresponding to a specific
role in the ontology, is retrieved. Among these global variables, the one with the highest
value is picked and the role corresponding it is assigned to the visual element. This assertion
and firing process is repeated for each visual element in the web page. Unlike the string
comparison for each attribute of each rule, rule engine respond much faster due to the Rete
Algorithm.

In our second approach, template, global variables and heuristic rules were defined
in each execution of the system. In order to retrieve the roles and their characteristics,

Unpublished and confidential

Section 3 Conclusion 13

the ontology was also parsed. However, as explained earlier, we realised that, this is an
unnecessary process to handle in each execution, rather we decided to store these definitions
in a local file, and reconstruct it only if the ontology changes. Jess provides a file format,
which is CLP, and all template, global variable and heuristic rule definitions can be stored
in a CLP file. On the other hand, facts which are asserted to the rule engine are based on
the visual elements in the segmented web pages and they are constructed in each program
execution. After this enhancement, our system architecture had its final state, as represented
in Figure 3.

Jess also enables to list the fired rules over an asserted fact. This list can be used in
an explanation mechanism to give more detail about why a particular role is assigned for a
visual element. We believe that, this can be a useful tool for designers and developers to see
the results of their design in terms of heuristic roles and can be used to improve the design
quality by validating a given web page.

In conclusion, direct string comparison is an inefficient method for detecting the heuris-
tic role of a visual element, especially when the structural complexity of the web page
increases. In order to provide more effective and efficient way, we have used Jess rule en-
gine to reason on visual elements. In this section, we explained our development steps and
technical terms of Jess rule engine.

3 Conclusion

This technical report presented our ontology-based heuristic approach to automatically
identify visual elements in a web page with their roles. Due to the difficulty of fully de-
scribing visual elements with their characteristics, we proposed a probabilistic model. In
this model, the role of the visual element is detected with respect to the number of its at-
tributes which satisfy the requirements of a role. The main components of the proposed
sistem are a visual element identifier, a knowledge base and a role detector module.

The most significant feature of the proposed approach is the ability to easily modify the
knowledge base. Although a wide range of heuristic roles and attributes of visual elements
have been analysed and covered, web design trends and patterns may change in the future.
Also, new web technologies may arise in the future, and the proposed method is capable
of handling such technologies. Finally, different tasks may require a narrowed or extended
set of roles and different specifications for role attributes. Our proposed approach is easily
modifiable and enables to adapt the changing technologies or web trends and to create task
specific ontologies.

In conclusion, the research presented in this technical report contributes an effective
method for identification of visual elements in web pages automatically. The findings of this
research can be used in different fields including information retrieval, web accessibility,
intelligent web user interfaces, web page transcoding or data mining.

Unpublished and confidential

14 M. Elgin Akpinar, Yeliz Yesilada

A Role Definitions in eMine Ontology

eMine Ontology includes following role definitions. The construction of this role set is
explained in Section 2.2.1.

e Advertisement is a graphical element which aims to direct users to an external page
for commercial purposes.

e Article contains a set of paragraphs, especially the main content of the page.
e Body represents the root block of the page.

e BreadcrumbTrail is a list of links and each link directs to a page in the hierarchical
structure of the web site. A highlighted link refers to current page.

e Caption is a short text for a table or a figure.
e Citation is a quotation or a reference to an external source.

o ComplementaryContent is a content element which is not the main content of the
element, rather a supplementary content.

e Container is a composite visual element which contains smaller sub elements.
e Copyright is copyright note, usually located at the bottom of the page.

e Figure is a set of special graphics and caption objects.

e Footer is a container which is positioned at the bottom of the page.

e Header is a container which is positioned at the top of the page.

e Jcon is a symbol for representing a tool or object in the page.

e [nteraction consists of form items such as input box, button and combo box.
o Label is used with a form element to identify the form element.

e Link is used to navigate user to internal or external pages.

e List is an array of items, such as links or content.

e Logo is used to orient users to page itself, or external sources.

e Menu is a list of links for navigation purpose.

o Menultem usually used to navigate users to internal pages.

e SearchEngine is used for searching a content. It usually contains a text editor, a button
and labels.

e Sidebar is a container which is positioned on the left or right side of the main content.

e Separator is a separator text or image between two distinct visual element.

Unpublished and confidential

Section B Object Properties in eMine Ontology 15

SpecialGraphic is an image which has a special meaning in the content.
Table is a tabular array which consists of a set of rows and columns.
Title is an identification name, which is given to a section.

TitleBanner represents the page title or logo.

Toolbar is a list of tool icons.

B Object Properties in eMine Ontology

In order to describe the roles, we have used following object property definitions:

has_id specifies the set of id, class, src attribute values which a role may have.

has_keyword specifies the set of keywords which may appear in textual content of a
role.

must_have_tag specifies the tags which a role may have in high probability.
has_tag specifies the tags which a role may have in normal probability.
may_have _tag specifies the tags which a role may have in low probability.

has_attribute describes the set of attributes which a role may have, such as onclick,
src, and so on.

in_position specifies the position of a role in the page, such as top or bottom.
has_child specifies which children roles may have a role.
has_sibling specifies which sibling roles may have a role.

has_parent specifies which parent roles may have a role.

e font_size defines the font size relative to the body font size.

e font_weight defines the font weight relative to the body font weight.

border specifies whether the role has borders.

e font_color defines if the font color of a role is the same with the body font color.

is_composite specifies whether the structure of a role is composite.
has_list_style defines if the role’s list_style property is set.
has_background specifies whether a role has background color or image.
has_order specifies whether a role is in the given order among its siblings.

has_size describes the exact size of a role.

Unpublished and confidential

16 M. Elgin Akpinar, Yeliz Yesilada

e word_count specifies the word count of a role, such as long or short.

e is_atomic specifies whether the structure of a role is atomic. It is the inverse of
is_composite property.

e relative_size describes the size of the role as wide or high, rather than numerical value
of its sizes.

e doc is related with VIPS Algorithm and specifies after which block extraction rule
the visual element is constructed.

Unpublished and confidential

REFERENCES 17

References

(1]

(2]

(3]

[4]

(5]

[6]

[7]

(8]

[9]
(10]

[11]

Elgin Akpinar and Yeliz Yesilada. Vision based page segmentation: Extended and
improved algorithm. Technical report, Middle East Technical University Northern
Cyprus Campus, 2012.

D. Cai, S. Yu, J. R. Wen, and W. Y. Ma. Vips: a vision based page segmentation
algorithm. 2003. Technical Report MSR-TR-2003-79, Microsoft Research.

Yu Chen, Xing Xie, Wei-Ying Ma, and Hong-Jiang Zhang. Adapting web pages for
small-screen devices. IEEE Internet Computing, 9(1):50-56, January 2005.

James Craig and Michael Cooper. Accessible rich internet applications (WAI-ARIA)
1.0. http://www.w3.0rg/TR/2010/WD-wai-aria-20100916/complete, 2010. retrieved
on 15.01.2013.

T. Eiter, G. Ianni, A. Polleres, Roman Schindlauer, and Hans Tompits. Reasoning with
rules and ontologies. In In Reasoning Web 2006, pages 93—127. Springer, 2006.

Simon Harper and Yeliz Yesilada. Web authoring for accessibility (WAfA). Journal
of Web Semantics (JWS), 5(3):175-179, 2007.

Milos Kovacevic, Michelangelo Diligenti, Marco Gori, and Veljko Milutinovic.
Recognition of common areas in a web page using visual information: a possible
application in a page classification. In Proceedings 2002 IEEE International Confer-
ence on Data Mining, pages 250-257, Washington, DC, USA, 2002. IEEE Computer
Society.

Peifeng Xiang and Yuanchun Shi. Recovering semantic relations from web pages
based on visual cues. In Proceedings of the 11th international conference on Intelli-
gent user interfaces, pages 342-344. ACM, 2006.

Yeliz Yesilada. Web page segmentation: A review. March 2011.

Yeliz Yesilada, Giorgio Brajnik, and Simon Harper. Barriers common to mobile and
disabled web users. Interacting With Computers, 23(5):525-542, 2011.

Xinyi Yin and Wee Sun Lee. Understanding the function of web elements for mobile
content delivery using random walk models. In The 14th International World Wide
Web Conference, pages 1150-1151. ACM, 2005.

Unpublished and confidential

